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Weather-related crop losses have always been a concern for farmers,

governments, traders, and policy-makers for the purpose of balanced food

supply/demands, trade, and distribution of aid to the nations in need. Among

weather disasters, drought plays a major role in large-scale crop losses. This paper

discusses utility of operational satellite-based vegetation health (VH) indices for

modelling cereal yield and for early warning of drought-related crop losses. The

indices were tested in Saratov oblast (SO), one of the principal grain growing

regions of Russia. Correlation and regression analysis were applied to model

cereal yield from VH indices during 1982�2001. A strong correlation between

mean SO’s cereal yield and VH indices were found during the critical period of

cereals, which starts two�three weeks before and ends two�three weeks after the

heading stage. Several models were constructed where VH indices served as

independent variables (predictors). The models were validated independently

based on SO cereal yield during 1982�2012. Drought-related cereal yield losses

can be predicted three months in advance of harvest and six�eight months in

advance of official grain production statistic is released. The error of production

losses prediction is 7%�10%. The error of prediction drops to 3%�5% in the

years of intensive droughts.

1. Introduction

Drought is a direct cause of famine killing hundreds of thousands of people and dis-

rupting livelihood of millions in the developing countries (WFP 2014). The devel-

oped countries suffered from droughts as well due to an increase in the cost of

population living following some shortages of food and price increase. From the

most recent events, the droughts of 2010 in Russia and 2012 in the USA produced

considerable local and global economic impacts. During the 2010, grain production

in Russia dropped to 75 million metric tons (mmt) compared to 97 mmt in 2011. The
2012 drought in the USA costs the country’s taxpayers nearly $35 billion in economic

losses from considerable yield reduction, food and farmland price increase, water

shortages, and fire-related ecosystem destruction. Both droughts have also led to
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global grain reduction, shortages of grain supply compared to the demands, lack of

grain on the international market, and corresponding price increase (Goldenberg 2012;

U.S. Drought 2012).

In the years when drought affects some of the major grain growing countries and

regions (USA, China, India, European Union, Russia) global production falls below
the consumption, the later has a high rate of increase due to a fast growing Earth

population. In 8 of the first 13 years of the twenty-first century, global grain produc-

tion falls below the consumption (PotashCorpo 2012). Therefore, assessment of

drought-related losses of grain well in advance of harvest in the principal producing

countries is an important task not only for that country but also for prediction of the

global supply/demand, import/export, prices and evaluation of assistance to the

developing nations. The goal of this paper is to investigate the potential of modelling

commercial grain production of several grain crops (cereals) using space observa-
tions and estimation of drought-related losses of cereals in advance of harvest.

Russia was selected for this experiment providing cereal production data and USA

provided operational satellite data. Saratov oblast’ (SO, administrative province)

was selected as one of the important grain producing districts in the Lower Volga

region located in the southeastern European Russia (figure 1).

Figure 1. Geographic location of Saratov oblast (SO), Russia: cereal crops are growing all
over and VH satellite data were collected from the black area.
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2. Grain in Russia and environment

Russia is the fourth largest grain producing country in the world after China, India,

and USA. Grain harvested in Russia is entirely consumed inside the country. How-

ever, since the demands for grain are higher than the supplies, Russia purchases on
the average nearly 3 million metric ton (mmt) of grain annually from the interna-

tional market. In some years, when large-scale drought causes huge crop losses, this

amount is doubled as it was in 1999 and 2000, when the purchases reached 7.8 and

5.8 mmt, respectively (FAO 2012). Therefore, advanced knowledge about the

amount of grain collected in a particular year is very important not only for estima-

tion of domestic grain use, but also projections of global supply and demand, inter-

national trade and consequently food security.

Southern Russia is the main grain basket in the country producing nearly 70% of
high quality grain. Agricultural land of SO covers nearly 9 million hectares (ha),

with 6.1 million ha occupied primarily with grain crops, which fields are traditionally

huge and have not changed over years in order to receive maximum production with

the best grain quality (Voeikov & Gortsev 2014; Zernoimport 2014). This region has

fertile, well drained and nutritional Chernozem soils, which are good for cultivation

of grain crops such as wheat, barley, oats, and corn. However, climate of this area is

semi-arid, and the shortage of water puts considerable constraint on grain produc-

tion. The situation is complicated by hot weather accompanied by desiccative winds
(suhovei). Moreover, the unusually light snow cover does not make up for summer

moisture deficit. Although this area has a few rivers, the area of commercial grain

crops is so large that the amount of available water is not sufficient to offset dry cli-

mate. Therefore, grain crops are generally not irrigated. In drought years, up to 40%

of grain production might be lost in that area.

One of the major geographic features of SO is Volga river, which divides the terri-

tory into two parts. The western part, (the right bank, of the river, excluding south),

belongs to forest-steppe zone and the eastern part (the left river bank) belongs to
steppe zone. The amount of grain produced each year in SO depends on the amount

of natural water supply. Annual amount of precipitation (Pr) in SO is not large,

changing from 500 mm in the north to 300 mm in the south. Most precipitation falls

during the warm period. Moreover, since summer is hot, potential evapotranspira-

tion (PET) in this area is large exceeding the amount of precipitation. As a result, the

natural annual water balance (Pr-PET) is 200�400 mm short. Ninety per cent of this

deficit occurred during warm period. The water shortage is usually accompanied by

hot weather, droughts, and desiccative wind (suhovei). Droughts are typical for this
region, affecting crops severely as it was in the past 30 years of the twentieth century

(1972, 1975, 1980, 1984, 1995, and 1998). Light snow cover in this region does not

offset the spring and summer moisture deficit (Kogan 1983).

Since climate controls grain losses, weather data are normally used for the model-

ling of individual grain crop production and prediction of losses. However, the

weather-station network in Russia is not dense enough for accurate assessments of

weather impacts, considering a very large area under grain, the number of farms

growing crops, and high variability of rainfall. Moreover, since disintegration of the
Soviet Union in the 1990s and deterioration of economic and social situation, the

number of weather-observing stations in Russia reduced three times. Therefore, sat-

ellite data were used as proxy for weather variables in this area. These data were

used before to model and monitor individual grain crops (wheat, corn, soybeans,
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and other) but have never been used for a group of crops, called cereals and grown in
spring-summer (Liu & Kogan 2002; Dabrowska-Zielinska et al. 2002; Domenikiotis

et al. 2004; Kogan et al. 2012).

3. Data

This study employs satellite and in situ data. In situ data were presented by produc-

tion in tons (t), area in hectares (ha), and yield (Y, t/ha) for spring-planted cereals,

which included wheat, barley, oats, corn, and pulses. Spring wheat, barley, and oats

occupy 90% of the area. All crops are planted in late April early May and are har-

vested in August�September (USDA 1994). Therefore, cereal analysis in this

research is represented by these three crops. The data were obtained from the

Russia’s Central Statistical Administration. Total regional production and area were

summarized from the reports of all farms to SO level at the end of agricultural year;
SO yield was calculated by dividing production by area.

Satellite data were collected from the National Oceanic and Atmospheric Admin-

istration (NOAA) Global Vegetation Index (GVI) data set during 1981�2012. Spa-

tial and temporal data resolution was 16 km and 7-day composite, respectively

(Kidwell 1997). Since grain crops occupy slightly over 6 million ha in SO, satellite

data were aggregated from around 1100 (hundred times exceeding the number of

weather stations used for spatial aggregation of SO precipitation and temperature)

16-km pixels in the SO area shown in figure 1. Such a large number of pixels are suffi-
cient for characterizing average SO land cover conditions (Kogan et al. 2003). The

GVI-based counts in the visible (VIS), near infrared (NIR), and infrared (channel 4,

10.3-11.3 mm) spectral regions were used in this research because they characterize

conditions of vegetation, including crops. The first two changes with chlorophyll and

water content in green vegetation and the last one helps to monitor thermal condi-

tions. Pre-launch calibration was applied to VIS and NIR counts to convert them to

reflectance, and post-launch calibration was applied to correct reflectance for sensor

and orbit degradation (Kidwell 1997). Finally, these data were used to calculate nor-
malized difference vegetation index (NDVI D (NIR - VIS)/(VISCNIR)) and convert

Ch4 counts to brightness temperature (BT).

4. Methodology

Both yield and satellite data time series were processed in the following way:

4.1. Yield

Yield time series of any crop over a period of more than 15 years can be approxi-

mated by the following equation (Obukhov 1949):

Yn D Ŷn C dYn (1)

where Yn is actual yield; Ŷn is a slow-changing yield’s deterministic component con-

trolled by the agricultural technology (breeding, mechanization, fertilizers, weeds

control, etc.); dYn is yield’s random component regulated by weather fluctuation

from year-to-year; n is the number of years in yield time series.
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The technology-related yield trend (Ŷ n) can be approximated by a polynomial
(either linear or non-linear depending on longevity of yield series), regressing Y

against year number. For yield time series longer than 20 years, non-linear polyno-

mial approximation (for example, quadratic polynomial) is regularly used in order to

represent appropriately the rate of yield growth and impacts of the interaction

between climate and agricultural technology on yield (Fisher 1922; Obukhov 1949).

At a general background of the slow-moving technology-driven trend, fluctua-

tions of yield around the trend are mainly explained by weather variations from

year to year. In years of favourable weather for crop growth, yield exceeds the
level estimated by the trend line and in the opposite situation of unfavourable

weather yield drops below the trend. Following these considerations, dYn is nor-

mally expressed as a ratio or difference (for a shorter time series). In this research,

we used the ratio, characterizing deviation from agricultural technology related

yield trend. This method allowed us to represent adequately variation of the yield

around trend at the beginning and at the end of 20-year time series (Fisher 1922;

Obukhov 1949).

dYn D Yn=Ŷ n (2)

4.2. VH indices from the advanced very high resolution radiometer (AVHRR)

The principle for constructing these indices stems from the properties of green vege-

tation to reflect visible and emit thermal solar radiation. If vegetation is healthy, it

reflects little radiation in the VIS part of solar spectrum (due to high chlorophyll
absorption), much in the NIR part (due to scattering the light by leaf internal tissues

and water content), and emit less thermal radiation in IR spectral bands (because the

transpiring canopy is cooler). As the result, NDVI becomes large and BT small.

Oppositely, for unhealthy vegetation NDVI becomes smaller due to reduced chloro-

phyll (less absorption and greater reflection) and water content (greater reflection)

and BT larger because vegetation surface becomes hotter following reduced transpi-

ration (Cracknell 1997).

It is important to emphasize that NDVI and BT quantify both spatial difference
between productivity of different ecosystem (ecosystem component, EC) and weather-

related variations in each ecosystem (weather component, WC). The EC is normally

influenced by long-term environmental factors such as climate, soils, topography,

landscape, geology, etc., while the WC is controlled by weather fluctuations in each

ecosystem. Since weather-related NDVI and BT variations are much smaller than var-

iations due to ecosystem differences, separation of WC (by calculating deviation of

NDVI (BT) from their climatology) is an important procedure to do prior to compar-

ing their each year weekly variations with each year yield fluctuations (Kogan 1997).
Following these considerations, the Vegetation health (VH) indices calculated

from NDVI and BT were introduced. Details of the algorithm are presented in

Kogan (1997). Here, the important steps are indicated. They include (a) complete

elimination of high frequency noise from NDVI and BT annual time series, (b)

approximation of annual cycle, (c) calculation of multi-year climatology, and (d) esti-

mation of medium-to-low frequency fluctuations in NDVI and BT associated with

weather variations (expressed as departures from seasonal cycle climatology). The
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VH indices were represented by NDVI-based Vegetation Condition Index (VCI), BT-
based Temperature Condition Index (TCI) and Vegetation Health Index (VHI), aggre-

gating VCI and TCI together. Equations (3�5) provide these approximations.

VCI D 100 � ðNDVI�NDVIminÞ=ðNDVImax�NDVIminÞ (3)

TCI D 100 � ðBTmax�BTÞ=ðBTmax�BTminÞ (4)

VHI D a�VCI C ð1� aÞ � TCI (5)

where NDVI, NDVImax, and NDVImin (BT, BTmax and BTmin) are no noise (statisti-

cally smoothed) weekly NDVI (BT) and their 1982�2003 absolute maximum and mini-
mum representing climatology of these indices, respectively; a is a coefficient

quantifying a share of VCI and TCI contribution in the VHI. Since this share is gener-

ally not known for a specific location and time of the year, it was assumed that VCI

and TCI contributions are equal (aD 0.5).

The values of these indices change from 0 to 100. Zero quantifies severe vegetation

stress (moisture-based from VCI and thermal-based from TCI) associated with the

lowest weekly NDVI (BT) values, which correspond to the 1982�2006 absolute mini-

mum of weekly climatology (NDVImin and BTmin). The VH value 100 quantifies very
favourable conditions or the highest weekly NDVI (BT) corresponding to the 1982-

2006 absolute maximum value of weekly climatology (NDVImax and BTmax; Kogan

1995). The application of these indices as a weather proxy in a few countries (Poland,

Brazil, Argentina, Zimbabwe, Morocco, Russia, India, Mongolia) showed that they

correlate highly with productivity of crops and pastures and can be used as numerical

weather indicators of agricultural losses in advance of harvest (Kogan 1997, 2002;

Kogan et al. 2005; Liu & Kogan 2002; Dabrowska-Zielinska et al. 2002; Unganai &

Kogan 1998). Weekly area-average indices (VCI, TCI and VHI) were calculated for
the entire SO cereals growing area indicated in Atlas (1960) and USDA (1994). This

area was inside the coordinates 42.5 ¡ 51.5 N, 50.5 ¡ 53.0 E. Mean values of VH

indices were calculated from 1102 16-km pixels.

4.3. Statistical procedures

Since dY yield and VH indices were similarly expressed as a deviation from climatol-

ogy (from trend for cereals and from max-min for VH), correlation and regression

analysis were used to: select the index type, time of their strongest impacts on dY

and develop dY-VH models to be used for assessment of yield losses. The data

selected for statistical analysis included 20 years of cereal yield (derived after harvest

time) and 20 years of VH data for 52 weeks in each year (total 1040 images were used

to calculate mean spatial value of each index for the entire period). The Pearson cor-

relation coefficients (CC) were used as a criterion to initiate this selection. Since the
number of variables is large (considering three indices and 30-week intervals for

each) and they are inter-correlated (collinear), two methods of variable (predictors in

statistical model) reduction were applied (a) partial correlation coefficients (Snedecor

1965) and (b) weighting variable contribution and aggregating them to one variable

following Obukhov (1949).

The partial correlation coefficients (PCC) method estimates the contribution

of each independent variable when other variables are fixed at the average level

(Snedecor 1965). The PCC indicator is an important criterion to use for the selection
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of predictors, which are collinear with others and have the largest contribution to
variability of a dependent variable (predictant). Models, which include collinear vari-

ables, become statistically unstable and less accurate. In order to improve such mod-

el’s stability, the variables with the lowest PCC should be removed. The procedure of

predictors’ selection consists of several steps. In the first one, a dY-VH model is built

based on all weeks with the highest CC for a particular index. In the following steps,

the predictors with the lowest PCC are removed and for the remaining predictors

PCCs are re-estimated. This procedure is finalized when the remaining predictors

have PCC � 0.6.
After PCC-based predictors’ selection is completed, the method (b) is applied: pre-

dictors from several weeks are aggregated into one variable with the weights calcu-

lated from CC values using approximation in equation (6). These weights are applied

to the corresponding variable following equation (7), showing for VCI example.

Wi D CCi
2=ðCCi

2 C CCi C 1
2 C � � � C CCi C n

2Þ
Wi C 1 D CCi C 1

2=
�
CCi

2 C CCi C 1
2 C � � � C CCiC n

2
�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .:

Wi C n D CCiC n
2=
�
CCi

2 C CCi C 1
2 C � � � C CCi C n

2
�

(6)

VCIk D VCIi
�Wi C VCIi C 1

�Wi C 1 C � � � C VCIi C n
�Wi C n (7)

In equations (6) and (7), W� weight, CC � correlation coefficient, CC2 � determi-

nation coefficient, i and n � first and last weeks of predictors’ aggregation, respec-

tively, k � the new aggregated variable.

4.4. Validation

An important step in building statistical models is to test model predictions outside

of a training set, because if the same training data set is used the results of model per-

formance would be very optimistic due to instability of model (Snedecore 1965).

Since the data sample used in this study is limited, a cross-validation technique was

applied for independent model verification. In this approach, a single year was left

out one-by-one from the data, a model was built for each set without one year and

prediction was made for the removed year. The models were evaluated based on
determination coefficient (R2) for predicted (P) versus observed (O) yield values, bias

((B) - difference between (P) and (O) yields), mean B (MB D (
P

B)/N), relative bias

((RB) D 100�(B)/(O)), and Mean bios error (MBE D (
P

(B)2/N), both systematic

(SMBE) and non-systematic (NMBE). The SMBE and NMBE estimate what por-

tion of MBE is unaccounted (due to predictors not included in the model) and

accounted (due to included predictors), respectively (Willmott 1982).

5. Results

Figure 2 shows mean SO cereal yield (t/ha) and its linear trend during 1971�2001.

The trend was approximated from the 10-year longer than modelling data set in

order to avoid errors at the ends of shorter-period time series (Snedecore 1965). Fol-

lowing equation (1), trend was approximated as Ŷn D 1.08 C 0.000013�year; dYn was

estimated from equation (2). Average VCI, TCI, and VHI for SO area (USDA 1994)
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were calculated for each year of the 1982�2001 period from 1102 16-km pixels. It is

important to mention that the time series of indices (not shown) did not experience

any trend due to a comprehensive processing procedure applied to satellite data.

Since these indices represent weakly deviation from their climatology for each year,
they were further correlated with the mean SO cereal yield anomaly.

Figure 3 shows dynamics of the Pearson correlation coefficient for the end of sea-

son dYn (the numbers for the collected yield are normally available in January�Feb-

ruary of the year following crop harvesting) with the indices (upper) and with SO

area mean total monthly precipitation (dP) and mean temperature (dT) anomaly. As

seen, the dynamics for three indices and weather parameters is smoothed and indi-

cates near zero correlation prior to crops planting and high correlation in the middle

of the growing season.
Table 1 demonstrates five steps of predictors’ selection for the dYn � TCI and VHI

models based on the PCC values. Principally, the lowest PCC are eliminated from the

models (steps 1�4) and the final model is built when PCC > 0.6 for all predictors,

which is shown in step 5. Table 1 results were used to develop four models with all

predictors (equations (8) and (9)) selected in table 1 and cumulative predictors (equa-

tions (10) and (11)) following the equations (6) and (7) approximation. Finally,

table 2 and figure 4 demonstrate independent models’ validation following (Willmott

1982). Figures 5 and 6 illustrate drought area and intensity during 2010�2013. These
years were unusual, especially 2010 with almost 100% drought area; in two other

years, drought area was estimated at 40% but thermal stress in spring of 2013 covered

almost 80% of SO area.

6. Discussion

6.1. Yield trend

The cereal trend (figure 2) indicates that from the 1970s, agricultural technology-

related yield did not increase and remained at the level of 1.1 t/ha. This means that

Figure 2. Cereal yield time series in SO, Russia during 1972�2001.
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Figure 3. Dynamics of correlation coefficient for Saratov oblast’s cereal yield departure from
trend with (a) SO spatial mean VCI, TCI, and VHI and (b) with SO spatial monthly mean pre-
cipitation and temperature anomaly (deviation from climatic normal).

Table 1. Selection of TCI and VHI predictors for cereal’s dY models based on partial
correlation coefficients (PCC), Saratov oblast, Russia.

Index
Correlation

type Step Tci22 Tci23 Tci24 Tci25 Tci26 Tci27 Tci28 Tci29

TCI CC 0.71 0.72 0.74 0.72 0.69 0.58 0.47 0.75

PCC 1 0.31 0.15 0.49 0.40 0.61 0.81 0.83 0.58

PCC 2 0.66 0.51 0.42 0.61 0.81 0.85 0.62

PCC 3 0.47 0.50 0.68 0.82 0.81 0.52

PCC 4 0.30 0.79 0.81 0.80 0.70

PCC 5 0.80 0.81 0.81 0.75

VHI Vhi22 Vhi23 Vhi24 Vhi25 Vhi26 Vhi27 Vhi28 Vhi29

CC 0.68 0.79 0.77 0.79 0.80 0.73 0.77 0.73

PCC 1 0.04 0.03 0.15 0.10 0.79 0.70 0.59 0.73

PCC 2 0.18 0.16 0.56 0.79 0.71 0.70 0.72

PCC 3 0.18 0.59 0.80 0.73 0.68 0.72

PCC 4 0.49 0.80 0.73 0.67 0.72

PCC 5 0.80 0.77 0.71 0.75
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the technology applied to spring grain crops in SO does not stimulate yield growth.

Some of the causes of long-term yield hiatus are deterioration of environmental

resources (exhaustion of soil fertility, destruction of upper soil layer by heavy

machinery, weeds in the fields, etc.) as the result of their uncontrollable exploitation

over a long period of time, worsening of the economic situation, ill policies, etc.
Besides, deficient agricultural technology, shortage of water, and frequent droughts

limit agricultural production even more. At the background of flat yield tendency,

weather-related fluctuations of yield around the trend (dY) remained large. As seen

in figure 2, the extreme deviations of cereal yield from the trend in SO were in 1975

(below the trend) and 1978 (above the trend) with dY estimated fraction at 0.34 ver-

sus 1.98, respectively. These values can be interpreted as yield reduction by 66% in

1975 due to unfavourable weather (64% reduction in mean SO summer rainfall) and

increase by 98% in 1978 due to favourable weather (48% above climatic norm of SO
spatial mean summer rainfall (Dronin & Bellinger 2005)).

Table 2. Statistics of an independent testing of cereal models (1982–2001), Saratov oblast,
Russia.

Model 11 Model 10 Model 9 Model 8

MB ¡0.011 ¡0.002 0.006 0.008

MBE 0.061 0.064 0.072 0.078

SMBE 0.009(15%) 0.012(22%) 0.013(18%) 0.015(19%)

NMBE 0.052(85%) 0.042(78%) 0.057(82%) 0.063(81%)

R2 0.598 0.521 0.544 0.518

MB is Mean Bias between independently predicted (P) and observed (O) yields (t/ha).
MBE is Mean Bias Error of simulated yield, which includes, SMBE�Systematic MSE and
NMBE�Non-Systematic MSE.
R2 is square of CC between independently simulated P and O yields.

Figure 4. Observed and independently simulated (equation 11) SO cereal yield during
2002�2012.
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6.2. Correlation of dY with VH indices and weather variables

Figure 3 shows correlation coefficient (CC) dynamics of dY versus VCI (moisture
condition), TCI (thermal condition) and VHI (vegetation health) between weeks 10

(mid-March) and 40 (end of October). Our interests were to (a) investigate the

strength of this relationship and (b) whether the strongest correlation coincides with

the cereals’ critical period (the period of the highest crops’ requirements to moisture

and thermal conditions) and (c) if dY-VH correlation matches with dY-weather

correlation (both time and intensity).

Figure 5. Drought area and intensity for the European Russia and western Kazakhstan in
2010�2012 (Rectangle indicates SO location).

Figure 6. Saratov oblast VHI-based thermal stress dynamics (a) and per cent SO area under
droughts of severe-to-extreme and exceptional intensity (b).
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As seen in figure 3, in the early spring, which is cereals’ pre-planting, planting, and
emergence (weeks 10�15, March�April), the correlation for all indices is near zero.

It increases sharply during the green biomass accumulation in April and May (weeks

17�22). Thermal conditions during this period show much stronger correlation. It

means that they play greater role because at the general background of year-to-year

moisture deficit in SO, productivity of cereals depends much on air temperature: if

weather is hot, crops become stressed thermally and the end-of-season production is

reduced; oppositely, cooler weather stimulates higher production. The maximum

correlation in figure 3 occurs in June�July (weeks 26�30) for VCI and early June
(weeks 23�25) for TCI. The timing of these maximums coincides with the critical

period of spring-planted cereals’ development when they experience enhanced sensi-

tivity to weather conditions: yield is below trend for VH indices below 40 and above

trend if VH > 60.

It is important to emphasize, that correlation with in situ data (departure from cli-

matology of total monthly precipitation (dP) and mean monthly temperature (dT))

shows similar to satellite data results. Correlation coefficients’ time series of dY

versus dP and dY versus dT in figure 3 (Kogan 1986) are complimentary (in timing
and strength of the correlation) to dY versus VH correlation dynamics. Differences

in the sign of the correlation for temperature anomaly (negative) and TCI (positive)

is because TCI was designed to reflect a reverse temperature scale (from high to low,

equation 4), while in situ temperature reflect changes from low to high.

Although the correlation dynamics in figure 3 were in line with cereals’ response to

weather, it should be indicated that even for the weeks of the highest correlation,

VCI explained only 15%�30% of dY variance (CC D 0.36�0.41, table 1), for TCI

from 35% to 50% (CC D 0.47�0.75). The relationship of yield anomaly with
VHI was the strongest (figure 3 and table 1) explaining up to 64% of dY variance

(CC D 0.68�0.80). The largest correlation of dY with VHI emphasizes the impor-

tance of combining VCI (moisture conditions) and TCI (thermal conditions) together

even if their contribution to VHI was approximated as equal (equation 5).

Both methods (a) PCC and (b) equations (6�7) were applied for selection of varia-

bles (predictors) for dY-VH regression models. Table 1 presents the 4�6 steps pro-

cess of the method (a) for removing weekly predictors with the lowest PCC values

from TCI and VHI models. For example, in the first step for TCI model, a regression
equation was developed for all variables (weeks 22�29) with the highest CC (the top

line for each index). The PCC values in the first step indicated that TCI23 has the

lowest contribution (PCC D 0.15) to the model; this variable was removed from the

model and PCC were re-estimated for the remaining variables. Similarly, in the fol-

lowing steps, PCC values indicated that TCI 25, 22, and 24 do not provide statisti-

cally significant contribution (PCC D 0.42, 0.47, and 0.30, respectively) as predictors

of dY (due to their collinearity with other predictors) and they were removed from

the models step-by-step. Finally, after the TCI24 (PCC D 0.30 in step 4) was removed
from the model, the remaining variables (TCI26�TCI29) had the highest values of

PCC (0.75�0.81). These variables were included in dY model, equation (8).

Similarly, dY�VHI model in equation (9) included VHI26�VHI29 variables

(PCC D 0.71�0.80).

The estimates for equations (8) and (9) are statistically significant: the models’

Multiple CC (MCC) is large; 0.83 and 0.86, respectively, R2 explains 69% and 74% of

the dY variance, respectively, N is the number of data records, and DF is degree of

freedom. The underlined variables and all MCC are statistically significant at 1%
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and the remaining at 5%.

dY D 0:502 C 0:034 � TCI26�0:106 � TCI27 C 0:107 � TCI28 � 0:03 � TCI29
MCC D 0:83; R2 D 0:69; N D 20; DF D 15

(8)

dY D 0:501 C 0:114 � VHI26�0:316 � VHI27 C 0:289 � VHI28�0:076 � VHI29

MCC D 0:86; R2 D 0:74; N D 20; DF D 16
(9)

Meanwhile, small DF values indicate that further reduction of variables in these

equations is needed. Therefore, the method (b) was applied to equations (8) and (9). To

improve the stability of regression coefficients (Snedecor 1965), the number of indepen-

dent variables was reduced to one only resulting in the maximum DF. Following the

transformation in equations (6) and (7), equations (8) and (9) were re-written as:

dY D 0:462 C 0:006 � TCI26�29

TCI26�29 D 0:269 � TCI26 C 0:257 � TCI27 C 0:246 � TCI28 C 0:229 � TCI29
MCC D 0:86; R2 D 0:74;N D 20;DFD 19

(10)

dYD 0:496C 0:006 � VHI26�29

VHI26�29 D 0:246 � VHI26 C 0:249 � VHI27 C 0:253 � VHI28 C 0:252 � VHI29

MCCD 0:90;R2 D 0:81;ND 20;DFD 19

(11)

The MCC, R2, and DF in equations (10) and (11) are statistically sound, however,

not much different from models (8) and (9). Therefore, at the final step, all equations

(8)�(11)) were tested independently.

6.3. Independent validation

The statistics of an independent testing of (P) versus (O) cereal yield in SO is shown in

table 2. Following R2 and MBE values, the best models were (9) and (11), which are

based on VHI variables (both weighted and non-weighted). This again emphasizes

importance of combining together VCI (calculated from NDVI and estimating mois-

ture conditions) and TCI (calculated from BT and estimating thermal conditions).
Although the R2 for these equations are slightly different, equation (11) (weighted

VHI) has 7% smaller systematic MBE (0.009 versus 0.012) and larger non-systematic

error (0.052 versus 0.042), which is an important indicator of how good might be

model performance. It is important to mention that in the best models SMBE should

approach to zero while NMBE should approach to MBE (Willmott 1982).

Finally, two points should be emphasized: (a) the independently validated models

(table 2) have relatively high R2 (0.518�0.598), although it is smaller than the R2

(0.69�0.81) from the equations (8)�(11), what means that the R2 alone cannot be
considered as a complete and reliable indicator of a well-performing model; the

MBE and especially SMBE should always be estimated for this goal; (b) in April

2013, we received additional Saratov cereal yield data for the period 2002�2012 (11

years) and tested equation (11) during this completely independent period of simula-

tion. As seen in figure 4, equation (11)-based simulated P and observed cereal yield

match quite well: R2 D 0.611, MB D ¡0.029, MBE D 0.082, SMBE D 0.013 (16%),

and NMBE D 0.069 (84%). The completely independent model verification showed

quite similar to table 2 statistical evaluation.
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Losses of cereals were independently estimated quite accurately during
2010�2012, especially in 2010, when drought reduced cereal yield to 0.4 t/ha from

the general trend level for that year of 1.2 t/ha (FAO 2012). Comparison of 2010-

2012 droughts in European Russia is shown in figures 5 and 6. The drought of 2010

was high intensity and covered large area compared to other two years (figure 5). In

the middle of summer of all three years, SO experienced thermal stress (TCI < 40).

This stress was extreme in 2010 when TCI was below 20, for almost three months

and near zero (exceptional intensity) for 1.5 months, while in the other two years the

stress was weaker (TCI around 25) and shorter, continued less than two weeks
(figure 6(a)). Thermal stress of severe-to-exceptional and exceptional (the strongest)

intensity affected 100 and nearly 50% of SO area, respectively (figure 6(b)). In 2011

and 2012, the area of similar intensity thermal stress was much smaller

7. Conclusions

This paper discusses application of satellite-based globally universal VH technique,

used originally to monitor VH and drought detection, for statistical modelling of crop

yield. Previously this technique was applied and showed good results to model individ-
ual crops (wheat, corn, sorghum, rice, etc.). In this study, the VH proxies were applied

to a combination of grain crops, called cereals, which included wheat, rye, barley,

oats, corn, and pulses. The region was Saratov oblast, one of the major producers of

grain in the southern European Russia. The developed models were quite accurate

and reliable in prediction of cereal yield 3�4 months in advance of harvest and 6�8

months before official statistics of grain harvest is released. From the three indices

characterizing moisture (VCI), thermal (TCI) and VHI conditions, the last two were

very good predictors of cereal yield in SO, especially yield losses as it was in 2010. Fur-
ther investigation of yield losses predictors might include combining satellite data with

weather data, specifically during winter and early spring when vegetation is still dor-

mant and the application of VH indices is limited. The VH indices and data are deliv-

ered every week to http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/index.php. They

estimate and display global and regional vegetation health, moisture and thermal con-

ditions, drought, and fire risk. They also discuss climate issues and VH utility in global

observing system. Finally, this method will be considerably improved with observa-

tions from the new generation of operational satellite, called Suomi NPP (S-NPP)
with many advanced sensors on board. The new Visible Infrared Imager Radiometer

Suite (VIIRS) has started to provide radiance measurements with much higher spatial

resolution (375 m) and four times more spectral bands (compared to its predecessor).

Besides, VIIRS is currently providing exceptional data quality due to on board cali-

bration of visible channels, narrow response function, sharper view and consequently,

better quality NDVI, new vegetation indices (from mid to IR channels), and other

products (net primary production, leaf area, vegetation fraction, and others).

Disclosure statement
No potential conflict of interest was reported by the authors.

References

Atlas. 1960. Atlas of USSR agriculture. Moscow: Geodesi and Cartography.

Cracknell AP. 1997. The advanced very high resolution radiometer. London, England: Taylor

& Francis.

Remote Sensing Letters 899

http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/index.php


Dabrowska-Zielinska K, Kogan F, Ciolkosz KA, Gruszczynska M, Kowalik W. 2002. Model-

ing of crop conditions and yield in Poland using AVHRR-based indices. Int J Remote

Sensing. 23:1109�1123.

Domenikiotis C, Spiliotopoulos M, Tsiros V, Dalezios NR. 2004. Early cotton yield assess-

ment by the use of the NOAA/AVHRR derived vegetation condition index (VCI) in

Greece. Int J Remote Sensing. 25(14): 2807�2819.

Dronin NM, Bellinger EG. 2005. Climate dependence and food problems in Russia 1900-1990.

Budapest: Central University Press.

FAO. 2012. Crop production. Rome. Available from: http://faostat.fao.org/site/567/default.

aspx#ancor

Fisher RA. 1922. The goodness of fit of regression formulae and the distribution of regression

coefficients. J Royal Statist Soc. 85:597�612.

Goldenberg S. 2012. US drought could trigger repeat of global food crisis. Guardian [Internet].

[Accessed 2015 Apr 11]. Available from: http://www.theguardian.com/environment/

2012/jul/23/us-drought-global-food-crisis

Kidwell KB. 1997. Global vegetation index user’s guide. Washington (DC): NOAA Tech.

Rep., Department of Commerce; p. 65.

Kogan FN. 1983. Soviet grain production: resource and prospects. Soviet Geography: Rev

Trans. XXIV(9):631�661.

Kogan FN. 1995. Droughts of the late 1980s in the United States as derived from NOAA polar

orbiting satellite data. Bull Amer Meteor Soc. 76:655�668.

Kogan FN. 1997. Global drought Watch from space. Bulletin AmMeteorol Soc. 78:621�636.

Kogan F. 2002. World droughts in the New Millennium from AVHRR-based vegetation

health indices. Eos. 83: 557�564.

Kogan F, Gitelson A, Zakarin E, Spivak L, Lebed V. 2003. AVHRR-based spectral vegetation

indices for quantitative assessment of vegetation state and productivity: calibration

and validation. Photogrametric Eng Remote Sensing. 69:899�906.

Kogan F, Salazar L, Roytman L. 2012. Forecasting crop production using satellite based vege-

tation health indices in Kansas, United States. Int J Remote Sensing. 3:2798�2814.

Kogan FN, Yang B, Wei Guo. 2005. Modeling corn yield in China using AVHRR-based vege-

tation health indices. Int J Remote Sensing. 26(11):2325�2336.

Liu WT, Kogan F. 2002. Monitoring Brazilian soybean production using NOAA/AVHRR

based vegetation condition indices. Int J Remote Sensing. 23:1161�1179.

Obukhov VM. 1949. Urozai I Meteorologicheskie Factoru (Yield and Meteorological

Factors). Moscow: Gosplanizdat; p. 349. Russian.

PotashCorpo. 2012. Agriculture: crop overview. [Accessed 2012 Nov 22]. Available from:

http://www.potashcorp.com/industry_overview/2011/agriculture/16

Snedecor GW. 1965. Statistical methods. Ames, IA: The Iowa State University; p. 534.

USDA (United States Department of Agriculture). 1994. Major world crop areas and climate

profile. Washington (DC): Agricultural Handbook, No. 664; p. 279.

U.S. Drought. 2012. The New York times, science. [Accessed 2012 Dec 10]. Available from:

http://topics.nytimes.com/top/news/science/topics/drought/index.html

Unganai LS, Kogan FN. 1998. Drought monitoring and corn yield estimation in Southern

Africa from AVHRR data. Remote Sensing Environ. 63:210�232.

Voeikov VI, Gortsev AI. 2014. Saratov oblast. [Accessed 2014 Jul 15]. Available from: http://

encyclopedia2.thefreedictionary.com/SaratovCOblast

[WFP] World Food Program. 2014. [Accessed 2014 Apr 5]. Available from: http://www.wfp.

org/hunger/stats

Willmott CJ. 1982. Some comments on the evaluation of model performance. Bulletin Am

Meteorol Soc. 63:1309�1313.

Zernoimport. 2014. Agriculture of Saratov region. [Accessed 2014 Jul 15]. Available from:

http://zerno-import.ru/saratov_eng.php

900 F. Kogan et al.

http://faostat.fao.org/site/567/default.aspx#ancor
http://faostat.fao.org/site/567/default.aspx#ancor
http://www.theguardian.com/environment/2012/jul/23/us-drought-global-food-crisis
http://www.theguardian.com/environment/2012/jul/23/us-drought-global-food-crisis
http://www.potashcorp.com/industry_overview/2011/agriculture/16
http://topics.nytimes.com/top/news/science/topics/drought/index.html
http://encyclopedia2.thefreedictionary.com/Saratov&plus;Oblast
http://encyclopedia2.thefreedictionary.com/Saratov&plus;Oblast
http://encyclopedia2.thefreedictionary.com/Saratov&plus;Oblast
http://www.wfp.org/hunger/stats
http://www.wfp.org/hunger/stats
http://zerno-import.ru/saratov_eng.php

	Abstract
	1. Introduction
	2. Grain in Russia and environment
	3. Data
	4. Methodology
	4.1. Yield
	4.2. VH indices from the advanced very high resolution radiometer (AVHRR)
	4.3. Statistical procedures
	4.4. Validation

	5. Results
	6. Discussion
	6.1. Yield trend
	6.2. Correlation of dY with VH indices and weather variables
	6.3. Independent validation

	7. Conclusions
	Disclosure statement
	References



